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4,5-Disubstituted-3(2H)-pyridazinones were initially synthesized via sodium alkoxide additions to an
advanced bromide intermediate. A small parallel chemistry effort resulted in a poor success rate, and
we thus increased the reactivity of the reaction partner by performing a copper-catalyzed Finkelstein
reaction. Copper-catalyzed coupling of a diverse set of alcohols with the resulting iodide resulted in a
more successful effort. A number of alternative syntheses of this series of compounds are also described
and these methods proved to be versatile, efficient, and amenable to parallel synthesis.

� 2009 Elsevier Ltd. All rights reserved.
Figure 1. Initial hit 1 from high-throughput screening.

Scheme 1. Reagents and conditions: (a) N2H4�H2SO4, NaOAc, H2O, EtOH, 60 �C, 1 h
then reflux, 4 h, 90%; (b) KOtBu, c-C3H5CH2Br, DMA, 80 �C, 16 h, 42%; (c) DIEA, 1-(2-
pyrimidyl)piperazine, DMA, 100 �C, 16 h, 50%.
Pyridazines and their 3-oxo derivatives, the pyridazinones, are
widely recognized as versatile scaffolds with a diverse set of bio-
logical activities.1 As part of an ongoing drug discovery program
in our laboratories, compound 1 was identified from high-through-
put screening (HTS) and possessed attractive pharmacological
properties as well as structural features amenable to optimization
by rapid parallel synthesis (Fig. 1).

Unfortunately, 1 was highly cleared in vitro (human hepato-
cytes and liver microsomes). Metabolite ID studies revealed that
metabolism was occurring exclusively on the 4-alkoxy portion of
the molecule. Our strategy was thus to dramatically reduce the
lipophilicity (ELogD = 5.1) of this hit, whilst improving the ligand
efficiency (LE = 0.29).2 More specifically, we wished to expediently
and efficiently vary the 4-alkoxy portion of the molecule.

The initial route to these targets was via the formation of bromo
intermediate 5. This intermediate was accessed in a straightfor-
ward fashion following the three step protocol shown in Scheme
1.3 Mucobromic acid 2 was treated with hydrazine sulfate to afford
4,5-dibromo-3(2H)-pyridazinone 3.4 Deprotonation of 3 followed
by addition of cyclopropylmethyl bromide afforded 4 in moderate
yield. Reaction of 4 with 1-(2-pyrimidyl)piperazine at elevated
temperatures yielded intermediate 5 only in a moderate yield once
again.5

Due to the need to synthesize intermediate 5 on large scale, we
were unsatisfied by the yield of the last two steps. Inversion of the
sequence of these last two steps allowed access to intermediate 5
in a more efficient manner (Scheme 2).6,7 Deprotonation of 2-
cyclopentylethanol, followed by addition to bromide 5 afforded
target compound 1 in 90% yield.1b This final SNAr reaction was also
performed on a variety of diverse alkyl alcohols (�280) to afford
target compounds 7 with a success rate of 40%.
ll rights reserved.

hries).
Disappointed by the low success rate in the above library, we
proceeded to increase the reactivity of the pyridazinone coupling
partner (Scheme 3). To this end, bromide 5 underwent a copper-
catalyzed Finkelstein reaction to afford iodide 8 in good yield.8

Copper-catalyzed coupling of iodide 8 with 2-cyclopentylethanol



Scheme 5. Reagents and conditions: (a) 2-cyclopentylethanol, NaHMDS, dioxane,
50 �C, 2 h, 70%; (b) (CH2NHMe)2, CuI, NaI, dioxane, 100 �C, 16 h, 67%; (c) R1R2NH,
Cs2CO3, Pd2(dba)3, Xantphos, PhMe, 120 �C, 16 h.Scheme 2. Reagents and conditions: (a) DIEA, 1-(2-pyrimidyl)piperazine, DMA,

100 �C, 16 h, 71%; (b) KOtBu, c-C3H5CH2Br, DMA, 80 �C, 16 h, 95%; (c) ROH, NaHMDS,
THF, reflux, 16 h.

Scheme 3. Reagents and conditions: (a) (CH2NHMe)2, CuI, NaI, dioxane, 100 �C,
16 h, 80%; (b) ROH, phenanthroline, Cs2CO3, CuI, dioxane, 100 �C, 16 h.
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once again afforded target compound 1 in 92% yield.9 Taking a
small subset (�60) of the failed alcohols from the first library at-
tempt, we applied these new conditions to iodide 8 to yield target
compounds 7 with a success rate of 61%.

In an effort to efficiently vary the pyrimidine moiety of the mol-
ecule we required access to piperazine intermediate 12 (Scheme
4). Treatment of 4,5-dibromo-3(2H)-pyridazi-none 3 with 1-Boc-
piperazine afforded 9 in good yield.5 Deprotonation of 9, followed
by addition of cyclopropylmethyl bromide yielded 10. Deprotona-
tion of 2-cyclopentylethanol, followed by addition to bromide 10
resulted in the formation of 11 in 88% yield.1b Deprotection of
Scheme 4. Reagents and conditions: (a) DIEA, 1-Boc-piperazine, DMA, 100 �C, 16 h,
76%; (b) KOtBu, c-C3H5CH2Br, DMA, 80 �C, 16 h, 80%; (c) 2-cyclopentylethanol,
NaHMDS, THF, reflux, 16 h, 88%; (d) HCl, dioxane, rt, 16 h, 79%; (e) 2-Cl-HetAr, DIEA,
DMA, 100 �C, 16 h.
the piperazine afforded intermediate 12 in a concise manner.
Treatment of piperazine 12 with 2-chloropyrimidine afforded tar-
get compound 1 in 55% yield. This final SNAr reaction was also per-
formed on a variety of diverse 2-chloroheteroaryls (�55) to yield
target compounds 13 with a success rate of 89%.

Our final exercise was to identify a replacement for the 1-(2-
pyrimidyl)piperazine moiety (Scheme 5). This effort would require
access to iodo intermediate 15 in an efficient manner. The Hajós
group had described methods for selective reaction at the 4- or
5-position (e.g., 4) depending on the choice of solvent.10 Reactions
in solvents with high dielectric constant (e.g., methanol) afford 5-
alkoxy products, whereas solvents with low dielectric constant
(e.g., dioxane) favor formation of the 4-alkoxy regioisomer. Inter-
estingly, elegant work by Kerdesky revealed that there is also a
base effect on the regioselectivity.11 NaHMDS and KHMDS in THF
afford the 4-alkoxy product as the major regioisomer, whereas
LiHMDS in THF provides a reversal of selectivity favoring the 5-alk-
oxy product. In our case, we deprotonated 2-cyclopentylethanol
with NaHMDS in dioxane, and the resulting alkoxide was coupled
with dibromide 4 to afford required intermediate 14 in good yield.
At no point did we observe any 5-alkoxy regioisomer in this reac-
tion. Bromide 14 underwent a copper-catalyzed Finkelstein reac-
tion to afford iodide 15 in good yield.8 Significant optimization
was carried out in order to find an efficient method for accessing
target compounds 16. The optimum conditions utilized a Pd-cata-
lyzed amination reaction with 15 and a diverse set of amines. A
parallel array (�460 compounds) was performed utilizing this
methodology with a success rate of 30%.

In summary, we have developed a number of efficient protocols
for the facile synthesis of 4,5-disubstituted-3(2H)-pyridazinones.
Efforts on hit compound 1 required target compounds to be syn-
thesized via sodium alkoxide additions to an advanced bromide
intermediate. Poor success rate in the parallel array required us
to increase the reactivity of the reaction partner by performing a
copper-catalyzed Finkelstein reaction. Copper-catalyzed coupling
of a diverse set of alcohols with the resulting iodide led to a much
more successful effort. A number of these methods proved to be
versatile, efficient, and amenable to parallel synthesis.
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